1 a) $\nu=\mathbb{R}^{2}, U=\operatorname{span}\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right), \nu=\operatorname{span}\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$.
Both U and \forall are subspaces of ν.
Now take $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right] \in U \cup \forall 8$.
Since $\left[\begin{array}{l}1 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right] \notin U \cup z \gamma$, $U \cup \mathcal{D}$ is not a subspace of $\mathcal{\nu}$.
b) If $u \subseteq \Delta$ then $u \cup \gamma>\nu$ so $u \cup \gamma$ is a subspace.
Similarly, if $\forall \subseteq U$ then $U \cup \gamma=U$ so $U \cup B$ is a subspace.
c) Assume that $U \cup \forall$ is a subspace of ν. Suppose that there exists a vector $u \in U$ s.t. $u \notin \$ 8$.
Let $w \in \mathcal{D}$. Then $w \in U \cup b$. Also, $u \in U \cup s$. Since $U \cup み$ is a subspace, $u+w \in \mathcal{U} \cup \mathcal{F}$. We conclude that $u+w \in U$ or $u+w \in \mathcal{D}$.
d) Assume that $U \cup \forall$ is a subspace of ν. If $U \subseteq \mathcal{D}$ then we are done. suppose $u \notin \Delta$. Then there exists a $u \in u$ such that $u \notin \mathcal{D}$.
Let $w \in \mathcal{F}$. By c), either $u+w \in U$ or $u+w \in \mathcal{b}$.

If $u+w \in \mathcal{D}$ then $\underbrace{u+w}_{\in \mathcal{D}} \underbrace{-w}_{\in \mathcal{D}}=u \in \mathcal{D}$
since b is a subspace. This, however, is a contradiction by

We must therefore have that $u+w \in U$. But then $\underbrace{u+w}_{\in U}-\underbrace{u}_{\in U}=w \in U$, since U is a subspace. Because $W \in \mathscr{P}$ was arbitrary, we conclude that is $\subseteq u$.

2 a) $T: P_{2} \rightarrow P_{2}$ is defined by

$$
(T(p))(x)=x^{2} p\left(\frac{1}{x}\right)+p^{\prime \prime}(x) .
$$

Let $p, q \in P_{2}$ and $a, b \in \mathbb{R}$. To show:

$$
T(a p+b q)=a T(p)+b T(q)
$$

Write $p(x)=c_{0}+c_{1} x+c_{2} x^{2}$

$$
q(x)=d_{0}+d_{1} x+d_{2} x^{2}
$$

where $c_{i}, d_{i} \in \mathbb{R}$ for $i=0,1,2$.

$$
\begin{aligned}
T(p) & =x^{2}\left(c_{0}+c_{1} \frac{1}{x}+c_{2} \frac{1}{x^{2}}\right)+2 c_{2} \\
& =3 c_{2}+c_{1} x+c_{0} x^{2} .
\end{aligned}
$$

Similarly,

$$
T(q)=3 d_{2}+d_{1} x+d_{0} x^{2}
$$

Now, compute $T(a p+b q)$

$$
\begin{aligned}
& =T\left(a\left(c_{0}+c_{1} x+c_{2} x^{2}\right)+b\left(d_{0}+d_{1} x+d_{2} x^{2}\right)\right) \\
& =T\left(a c_{0}+b d_{0}+\left(a c_{1}+b d_{1}\right) x+\left(a c_{2}+b d_{2}\right) x^{2}\right) \\
& =3\left(a c_{2}+b d_{2}\right)+\left(a c_{1}+b d_{1}\right) x+\left(a c_{0}+b d_{0}\right) x^{2} \\
& =a\left(3 c_{2}+c_{1} x+c_{0} x^{2}\right)+b\left(3 d_{2}+d_{1} x+d_{0} x^{2}\right) \\
& =a T(p)+b T(q) .
\end{aligned}
$$

So T is a linear operator.
b)

$$
\begin{aligned}
T(1) & =x^{2}=-3 \cdot 1+2(1+x)+1 \cdot\left(1-2 x+x^{2}\right) \\
T(1+x) & =x^{2}\left(1+\frac{1}{x}\right)=x+x^{2} \\
& =-4 \cdot 1+3 \cdot(1+x)+1 \cdot\left(1-2 x+x^{2}\right) \\
T\left(1-2 x+x^{2}\right) & =x^{2}\left(1-\frac{2}{x}+\frac{1}{x^{2}}\right)+2 \\
& =3-2 x+x^{2} \\
& =2 \cdot 1+0 \cdot(1+x)+1 \cdot\left(1-2 x+x^{2}\right)
\end{aligned}
$$

So the matrix representation of T with respect to $\left(1,1+x, 1-2 x+x^{2}\right)$ is:

$$
\left(\begin{array}{ccc}
-3 & -4 & 2 \\
2 & 3 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

c) R maps the polynomial x^{2} to $\frac{1}{x}+2$, which is not in P_{2}. So R is not a mapping from P_{2} to itself and therefore not a linear operator on P_{2}.
$S\left(x^{2}\right)=4$, while $S\left(x^{2}+x^{2}\right)=32$.
So $S\left(x^{2}+x^{2}\right) \neq S\left(x^{2}\right)+S\left(x^{2}\right)$.
Thus, S is not a linear operator.

